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INTRODUCTION

An unusual occurrence of widespread oceanographic data coverage in

the eastern Indian Ocean (Fig. 1, F'ig. 2) has made possible a limited

regional description of temperature and current structure for June 1983.

The area north west of Australia is to be the subject of intensive effort

during 1986-87 in the LUCIE project (Marden-Jones and Godfrey, 1985). Data

discussed here have coincidentally been obtained over a similar area, and

may provide a useful adjunct to the data base for the LUCIE study.

Little work has been done in this area since the International Indian

Ocean Expedition (IOE) cruises sore than 20 years ago (e.g. Wyrtki, 1971).

The IOE cruises were the basis for establishing much of the known

oceanography of the Indian Ocean. The Indian Ocean is not completely known

however, as witnessed for example by the comparatively recent recognition

of the Leeuwin Current off south-western Australia (Cressviell and Golding,

1980).

Some features of the Indian Ocean have been well established by

the IOE cruises, but many descriptions were based on data combined from

cruises undertaken over several years, and for extended seasons. Good data

coverage was obtained in the present study off north western Australia over

a period of one week, with wide coverage over other areas in a two week

period.

The:aim of the present analysis is to build up as coherent a pic-

ture of oceanographic features for the east Indian Ocean as the data will

allow, and compare the results with historical data sources. The data

discussed also provide an opportunity to assess the usefulness of satellite

imagery in determining flow patterns and thermal structure for the east

Indian Ocean. With the advent of routine satellite data acquisition in
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oceanography, sea surface temperature (SST) patterns and their relation to

circulation and subsurface structure are of some interest. Ruoy data will

be compared with circulation patterns and current speeds deduced from

Nansen station and XBT data. A 'first-look' data analysis has previously

been given in Pamilton (1985), when tabulating the Nansen station data

taken during RANRL cruise 23/83. The availability of more data from buoys

and expendable bathy-thermoqraphs now allows a fuller analysis.

t
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DATA AND METHODS

Cruise tracks and dates are shown in Fig. 1. The time span of the

ship data is 21 May to 30 June 1983 with most data for 23 May to 15 June.

HMAS Cook and FRV Soela are oceanographic research vessels of the Royal

Australian Navy (RAN) and the Commonwealth Scientific and Industrial

Research Organisation (CSIRO), respectively. MV ANRO Australia is a

merchant ship fitted by CSIRO with an XBT launcher (Greig and others,

1986). Other vessels are ships of the RAN, namely HMA Ships Adelaide,

Canberra, Moresby, Swan, Torrens, and Yaru. Sites of Nansen stations,

expendable bathy-thermographs (XbTs) and buoy tracks are shown in Fig. 2,

(and Fig. 9). Buoy data are from Cresswell (1985). Depth of buoy drogue is

20 m. Nansen station temperature and salinity data are listed by Hamilton

(1985), together with temperature-depth cross-sections, some satellite

imagery, and a 'first look' data description. Details of FRV Soela cruises

are described by Leech (1983), and Stevens (1983). The XBTs are Sippican

type T4, nominally usable to 450 m. NOAA (United States National Oceanic

and Atmospheric Administration) infra-red (i.r.) satellite imagery was

received by the Western Australian Institute of Technology (WAIT), and

Geostationary Meteorological Satellite (GMS) i.r. imagery received twice

daily by Macquarie University, Sydney. The imagery is mostly for areas

east of 110*E., and is often cloud covered.

The measurement period coincides with the south-west monsoon,

described by Wyrtki (1962a) as a time of more vigorous atmospheric and

oceanic circulation than the north-east monsoon, which subsides in April.

Contour diagrams of horizontal circulation and thermal patterns

have been constructed from the data. Cross-sections of parameters are also
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used, as are plots of temperature versus salinity (T-S plots). Comparisons

of surface and subsurface patterns are made where possible, and some water

mass movemeAts traced. An intensive XBT survey was made by HKAS Cook in

the area north-west of Australia, together with 12 Nansen stations occupied

nominally to 1500 m. Niskin stations were occupied south of this area

by FRV Soela. Coverage in other areas is sparse and less synoptic.

d
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SEA SURFACE TEMPERATURE (SST)

Patterns of SST drawn from XBT data are shown in Fig. 3. Weak

frontal structure is seen from 21*S., 103*E. to Fremantle, with isotherms

becoming parallel in a stronger frontal region along the coast. The

Leeuwin Current can clearly be seen in both NOAA and GM4S imagery as a

streamer of warmer water from north of Shark Bay to the Great Australian

Hight, and is reflected in the XBT data as warm waters along the coast. It

appears widest north of Shark Bay.

Warm patches of water at or near a temperature of 28
0
C occur near

16
0
S., 119*E. and 13

0
S., 1151E. These waters are over 70 m deep, but

horizontal extents are not well defined. The 119*E. patch appears in

cross-sections to be a warm pool or eddy, to the south of the South

Equatorial Current (SEC). Relatively cooler waters (less than 271C) occur

to the south and west of Sumba. In contrast the warmest waters (over 29C)

are seen to the west at roughly the same latitude, south-west of Java. The

cooler waters are perhaps caused by upwelling on the northern border of the

South Equatorial Current, as described by Wyrtki (1962b). Little thermal

relief is seen over much of the northern area, including the area north-

west of Broome, a data intensive area. GOSSTCOMP (Global Operational Sea

Surface Temperature Computation, a NOAA product) charts for the weeks

ending 7 and 14 June also show little thermal relief.

Except in the north-west, GOSSTCOMP isotherms agree closely with

those shown here in position, but roughly south of 15*S are low by 19C. The

GOSSTCOMP charts could therefore be used with a fair degree of confidence

to fill in areas where ship data are scarce. Two or three of the weekly

GOSSTCOMP charts should be used, to check for self consistency from one

period to the next, since shifting patterns of cloud coverage can cause

apparent changes in satellite derived SST.
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Cooler water at less than 250 C indicative of upwelling is seen in

the Port Hedland area, in FRV Soela data and H4AS Cook engine room inlet

temperatures, and is also seen in the GOSSTCOMP charts. Macquarie

University GMS imagery shows it to occur in a band along the coast from

Port Hedland to Broome. Salinity data from FRV Soela supports the idea of

upwelling, with higher salinity near the coast, and isohalines tilted

upwards. The upwelling is seen in the imagery over the whole analysis

period.

I.,
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COMPARISONS OF SST WITH HISTORICAL SST DATA

The general SST patterns and ranges are typical of those shown in

sources for this period of the year, e.g. Tchernia, 1980 (plate 16). The

frontal structure about 25-27OS., 108-110 0 E. corresponds in location with

the northern boundary of a cyclonic current loop described by Wyrtki (1962a)

as a permanent feature of the circulation. The SST frontal pattern appears

to be the surface expression of this dynamic feature. Infra-red imagery

(e.g. Legeckis and Cresswell, 1981) (plate 1) appears to show a clear front

visible between warm northern and colder southern waters in this area, i.e.

the cyclonic loop can be detected in SST patterns. The cyclonic loop is

also suggested in a WAIT infra-red image for 25 May 1983. Other imagery is

cloud covered.

Rochford (1962, Fig. 5 for July-October) also found cooler

northern waters at less than 27*C, and a warm area over 270C near 13-15*S.,

118*E. for the period July to October, corresponding to the warm patch

shown here at 28°C. The cooler waters shown by Rochford extend eastward in

a tongue along 120S., 120-122*E., as they do here. The warm patch at

130S., 115°E. corresponds to a region of high temperature shown by

Rochford extending westward from the Australian coastline along 12*S.

Waters with temperature less than 27*C near the coast at 15°S., 125 0 E. also

correspond to a cooler area less than 27WC shown by Rochford, which in his

maps is connected to the northern cooler waters already mentioned. The

GOSSTCOMP chart ending 14 June (but not 7 June) also shows cooler waters

from the coast to Timor, in a pattern very similar to that of Rochford.

These are striking similarities and indicate a remarkable constancy in the

surface thermal regime for this period of the year in both temperature and

position of isotherms, although two sets of measurements taken 20 years

/
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apart hardly constitute a time series. SST in the north varies by only two

or three degrees all year round e.g. Tchernia (1980) (plates 15, 16) which

could explain some of the apparent constancy, but not all. The similari-

ties are likely to be related to the dynamics of the area for this period.

The locations of the two warm patches found here, and the warm

pattern shown by Rochford, are explained by the South Equatorial Current

(SEC) carrying waters westward along and north of 130 S, with a current

component advecting waters south. Surface circulation discussed laterI, shows such a pattern. The source area for the warmer waters appears to be

north-west of Australia, perhaps a remnant of summer heating. Rochford

(1969) attributes colder water at all depths to 300 m and deeper north of

140S to be due to dynamic uplift along the northern boundary of the SEC.

Mild upwelling in the same area discussed here off Broome was

noted by Rochford (1962, Fig.17) at temperatures of 25-27.70 C and salinity

34.50 to 35.00 practical salinity units. The lower temperature limit here

is 24.4 0C, with upper salinity limit of 35.2. The upwelling seen here

extends farther south-west along the coast than observed by Rochford.

Macquarie infra-red imagery also suggests upwelling in another area where

it was observed by Rochford, north of Wyndham.

!•
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TEMPERATURE AT 250 METRES DEPTH (T250) (Fig.4).

The frontal structure from 21S., 103*E. to Fremantle is seen in T250 but

more strongly. This indicates that the SST frontal pattern is indeed

related to subsurface structure. Warmer water north-west of Geraldton is

shown by several temperature cross-sections (Hamilton, 1985) to result from

an eddy, or meander structure. Cooler waters south of Sumba correspond to

the cooler SST seen there also i.e. the cooler waters are not merely a

surface phenomenon. There is considerably more structure in T250 in the

north-west area than for SST. The structure is complex but comparison with

dynamic topography does yield a consistent pattern for circulation. This

is discussed later.

'A ..
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WATER MASSES AND SALINITY

Several water masses can be identified from temperature and

salinity properties alone, but others can only be tentatively identified

without oxygen or other information. A cross-section of salinity for the

southern stations (Fig. 5) shows Antarctic Intermediate Water (a salinity

minimum) at 900 m, and South Indian Central (SIC) waters (a salinity maxi-

mum) from the surface to deeper than 125 m. A front in surface salinity

between stations 4 and 5 is seen to be caused by subtropical SIC water

underlying less saline surface water, a phenomenon described by Rochford

(1969).

Sea surface salinity data (Fig. 6) are available only at Nansen/

Niskin station sites. Highest surface salinity (35.91) occurs at statlon

2(26-17-S, 108-01'E), and lowest surface salinity (34.13) south of SumDa,

in conjunction with the lower SSTs there. For the few data points

available surface salinity tends to reflect the same pattern as for SST.

T-S curves are shown in Fig. 7, with water masses (after Rochford,

1969). Northern and southern stations are seen to lie in different T-S

regimes above 500 m depth. Profiles of salinity, temperature, and density

(Hamilton, 1985) also show characteristics pointing to water masses.

Elevated temperatures at 600 to 700 m and a corresponding deviation in the

density profile for stations 1, 2, and possibly 4 and 6 may be caused by

low salinity waters of the subtropical oxygen maximum drifting north on

about the 26.80 sigma-t surface. Stations 7, 8 and 9 show a salinity

maximum at 200 m of 34.78, 34.78 and 34.66 (with sigma-t of 25.33,

25.86, 25.67) consistent with Rochford's definition of the tropical oxygen

minimum. Stations 11 to 15 have the same water type below about 100-200 m,

with salinity varying little below 200 to 300 m.

/ ----
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Rochford (1969) describes this "vertically homogeneous zone as part of the

Equatorial Frontal Zone extending across the south Indian Ocean as a

structural feature of the South Equatorial Current". Temperature

cross-sections (Hamilton, 1985) show several correspondences with

subsurface salinity structure e.g. separation of isotherms in XBT sections

on southern sections is associated with intrusions of high salinity SIC

waters. The differing types of data sets (XUT and Nansen station) yield

consistent results.

b1-
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SURFACE CIRCULATION

A detailed picture of the surface circulation (Fig. 8) for the

area north-west of Australia and norti-west of Fremantle can be built up

from buoy data, geostrophic calculations, and temperature cross-sections.

In other areas there are no Nansen stations, and the currents inferred from

XBT sections alone are ambiguous in direction as explained later.

Temperature sections (Hamilton, 1985) allow the subsurface

expressions and extent of some of the currents indicated by buoys to be

defined in areas having no Nansen station data. It was hoped that

geostrophic calculations of surface current strengths would lead to a level

of no motion being found at which the geostrophic and buoy values would

agree. However the northern buoys are not near enough to Nansen station

data for very close comparisons, and a buoy in the area of the southern

stations has opposite general direction of travel to that calculated.

These points are discussed later.

Wyrtki (1962a) found that the choice of the depth of level of no

motion in the north did not affect the current strengths calculated, for a

level of 600 to 800 m or deeper. This is also found here for the northern

stations. According to Wyrtki, the South Equatorial Current (SEC)

penetrates to about 400 m, with geopotential topogx.phies from 1750 to

400 m very smooth north of 200S, so that the chcice of the depth of the

level of no motion is not critical. The level of no motion slopes to

2000 m south of 40°S. *The dynamic topography north of Australia is very

smooth indicating absence of distinct circulation at 400 m." This does not

preclude a mean flow at 400m.

/
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General results for surface circulation.

Cocos Island to North-west Australia

The South Java coastal current is seen flowing eastwards in

temperature sections from MV ANRO Australia, HMAS Moresby, and HKAS

Canberra, being stronger in the earlier section. This is consistent with

the direction of travel of the buoy west of this area for May to June

(Fig. 2). The temperature sections apparently extend to the east the

extent of the Java current as defined by the buoy for June. However it is

not certain the two currents are in fact the same. Surface currents south-

west of Java to Cocos Island are difficult to define from the XBT sections.

They generally indicate weak eastwards flow at the surface. However,

isotherms below 100 m slope downwards from north to south, as they do in

all north to south sections, indicating flow to the west. Whether the

westwards flow or the eastwards currents dominate cannot be determined from

these data. Hamon (1965) deduced a weak westwards current at 300 m for

15-32*S from a comparison of dynamic topographies of the surface and 300 m

level relative to 1750 m.

North East Indian Ocean

North-west of Australia there is a high data density for the

period. Comparison is available with data for May I - June 12 1961 (Hamon,

1965). There are two dominant features, the SEC flowing to the west at

about 14 cm/sec, and a cyclonic circulation at 14 to 17 cm/sec north-west

of Broome, relative to 1000 dbar. Average buoy current strength for June

to July for an area farther east is roughly 20 cm/sec, and for July to

August when nearer the station area is roughly 14 cm/sec. The average buoy

speed and geostrophic calculations are in good agreement. The 280 C waters

at 13@S., 1190E. appear in cross-section to be a shallow (70 m) pool of

i .1
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warm waters, having weak anti-cyclonic circulation, and possibly being

advected west on the southern boundary of the SEC.

Temperature fields and surface mixed layer depth for the area are

shown in smaller scale in Fig. 9, with Ramon's surface dynamic topography

and station positions in Fig. 10. It is readily apparent that Ramon's pat-

terns are very similar to those found here, for both directions and

strengths of circulation. Diagrams of surface dynamic contrast for the

two data sets are practically identical (Fig. 1U). For February-March 1962

however, Rlamon found an anti-cyclonic circulation in the same area. For

July-August 1961 the pattern was simi lar, but the SEW was very much

stronger, and the cyclonic circulation no longer closed. There is there-

fore no "a priori" reason for the present data and Ramon's data to be

expected to show such high correspondence. The contrast in dynamic

topography over the area is low, the highest difference between any station

* pair being 17 dyn.cm. The perpendicular surface-current component between

stations 14 and 15 relative to 200 m is 18 cm/sec, indicating flow of the

SEC to the south-west.

The circulation pattern deduced from the temperature field at

250 m (Fig. 9) bears a strong relation to surface circulation patterns

found from Nansen data. Shallower fields might also show closer

correspondence, but this is not investigated. The smoothing effect of the

Nansen station separation gives a broad pattern for circulation (Fig. 8)

which is seen to be consistent with the more complicated pattern deduced

from the T250 field alone.

South of 200S.

From about 22
0
S., 103*E., to Fremantle, surface circulation can be

well defined. XBT sections from IIMAS Cook and H14AS Moresby show stronger
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vertical qradients here than in sections farther north, allowing unam-

biquous inference of current components. There are 6 Nansen stations in

the area, although widely spaced. Near the coast, five YRT sections from

near Shark Bay to Fremantle allow aood definition. The same featurps are

seen in several sections, showiny data to he consistent, and allowing hori-

zontal as well as vertical extents to be defined.

The surface flow east of 210S., 103*F. is generally weak and to

the south-east, and has a meanderina pattern. Off Ceraldton a warm-core

eddy or meander is situated, with the HmAS Canberra XBT section showing no

weakening of the feature to the limits of the YPT traces at 450 m. The

12
0
C isotherm at the centre of the feature is over 470 m deep. A second

eddy or meander is situated north-west of Fremantle. The 25°C SST isotherm

marks the approximate boundary of the weak surface front from about 221S.,

103
0
E. to Fremantle, which has stronci subsurface expression between 200 m

and 500 m. Geostrophic current component strengths at the surface relative

to 1000 m range from 3 to 12 cm/sec, and aqree in direction with currents

inferred from the YBT sections. WAIT imaaery clearly shows the Leeuwin

current flowing south alona the coast and into the Great Australian Picht.

A buoy path shown by Cresswell (1984) for May to July 1983 alonq

about 24*S is generally in opposite direction to that given by the stations

and XBT sections. This indicates either that the buoy has lost its drogue,

that local wind effects on the buoy are over-ridino the rather weak

currents in this area, or that the depth of no motion is incorrect. Since

the XBT derived surface current directions inferred from the temperature

field at 250 m and shallower agree with the qeostrophic current directions,

with assumed level of no motion -f 1000 m, the latter seems unlikely. A

______

I I n_ _ _ _
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current reversal is shown at 150-200 m in this area by the geostrophic

calculation relative to 1300 m level of no motion, but the currents above

the minimum are much stronger than the currents below.

A subsequent CSIRO report (Metso and others, 1986) describes loss

of drogue for the buoy near the end of the track shown on 24 July, when a

tilt sensor was activated. It seems likely that the drogue was lost or

fouled much earlier.

The currents shown south of 20*S. in the present data are similar

i to those shown by Wyrtki (1962a) for October-November 1959 and Ramon (1972)

for July 1965. Dynamic topography of the sea surface relative to 1300 dbar

shown by Hamon for late July (his Fig.l(a)) indicates surface currents

largely identical to those inferred here, but not so in other months, where

the patterns vary, e.g. being much weaker in March 1966.

!I

/
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SU13SURFACE CIRCULATION

Although the number of Nansen stations occupied is not large, par-

ticularly in the south, several distinct subsurface circulation features

can be seen. Current profiles (Fig. 11) formed from geostrophic calcula-

tions between pairs of southern stations I and 2, 2 and 4, 4 and 5, 4 and

6, 2 and 6 show a current maximum (with respect to the surface) at 500 m

(see Fig. 2 for station numbers). Station 3 is not used because data were

obtained only to 200 m. Using 1300 m as d level of no motion shows that

current components reverse in direction between 150 and 200 m between sta-

tions 1 and 2, 2 and 4, 4 and 6, 2 and 6, and I and 6. The currents at

500 m +200 m then appear as a wzeak maximum (1 to 3 cm/sec) in the reverse

flow, except between stations 4 and 5 where current components at all

depths are in the same direction. This reverse current direction agrees

with movement of the subtropical oxygen maximum discussed in the section on

water masses.

Northwest of Australia, current profiles (Fig. 11) along north-

south sections show little current below 300 to 500 m, and a rapid

increase above this level to the surface, the SEC. liamon (1965) mentions

the -importance of the upper 300 m in determining the surface dynamic

topography in tropical and subtropical regions'. East-west sections show

much different profiles, with subsurface current maxima, at 150 m between

stations 12 and 13, and weakly at 250 m between stations 10 and 11.

Subsurface current component reversals occur also. The east-west sections

occur north and south of the SEC. The subsurface curr snt component between

stations 12 and 13 is tc the north and appears by its strength to be a

component of the SEC, above which lies a slower flow, or a flow in a

different direction, possibly related to the movement of the relatively

cooler and less saline surface waters south of Sumba. (i.e. the SEC

appears to be flowing to the north-west here, not directly westward.)
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The T250 field (Fig. 9) implies highly varying flow over the region, but

the broad pattern is consistent with the calculated geostrophic flow.

Subsurface currents between stations 10 and 11 calculated from vertical

spacing of 50 m are less than 2 cm/sec. Subsurface southward flow between

stations 11 and 14 relative to 300 m is effectively at equal current

strength of component from the surface to 100 m, weakening to zero at about

200 m, after which a reverse flow is seen to 300 m, with a maximum of only

I cm/sec at 250 m. The SEC thus appears to flow both westward and

south-westward near stations 11 and 14, with the shallower s.w. component

possibly reinforcing the cyclonic surface circulation discussed earlier.

The weak currents discussed may be in the 'noise' region of geostrophic

current calculations, but results do appear to be consistent.

.1l
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DISCUSSION AND CONCLUSIONS

The observations discussed in this Memorandum represent a further

source of information for a little known area subject to large seasonal

variations. They also enable comparison with historical data for

similarities or large differences in conditions. Scarce subsurface

measurements and wide quasi-synoptic data coverage enable limited

comparisons to establish the potential usefulness of satellite data for

studies of the east Indian Ocean. Buoy data and geostrophic data have been

compared. Several data types have been used in the analysis which yield

consistent results, establishing a data set of a kind not often available.

Not all the data are shown here. Hamilton (1985) presents the temperature

cross-sections, Nansen station data, and satellite imagery.

(A) Use of Surface Thermal Patterns To Infer Surface Circulation And

Other Features

(i) Between Equator and 200S

Two sources of satellite imagery used here detected upwelling off

the northwest Australian coastline which was seen in sea truth data by two

ships. Infra-red imagery should therefore be useful for studying the

occurrence of upwelling in this area. The surface thermal patterns shown

in Fig. 3 and Fig.9(a) are in general not related to flow patterns, at

least not for the spacing of observations discussed here. There is low

thermal contrast over much of the east Indian ocean for June and all year

round, making it difficult to detect currents by their surface thermal

expressions. The high water vapour content in equatorial regions makes

processing of satellite derived SST more difficult than in other latitudes,

further exacerbating the problem. Dynamic topographies off north-western
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Australia for June show low relief, and therefore low currents. Also, some

subsurface currents occur, on which weaker surface currents are super-

imposed. This may make surface thermal patterns difficult to interpret.

It appears that infra red satellite imagery may n)t be very useful for

current (and thermal) studies off north-west Australia, at least for June.

There is some indication of the South Java current as a weak SST frontal

region.

(ii) South of about 20*S.

Seawards of the Australian coastline, it appears that infra

red imagery of SST patterns can he used to deduce surface circulation pat-

terns. Legeckis and Cresswell (1981) have shown that it is possible to

study the Leeuwin current along the coast from about 20*S. into the Great

Australian Bight using infra red imagery. Hamilton (1984, 1986) made stu-

dies of the area 30-35oS., 110-115*E. which strongly suggested that SST

patterns were representative of subsurface structure and surface cir-

culation. In the open ocean, current and subsurface structure shown here

from about 21*S., 103*F. to shore is found to be reflected in SST patterns.

There are in general stronger surface thermal gradients south of 20*S. than

in the northern areas, and they are related to suhsurface structure.

(B) Use Of Buoys To Follow Surface Circulation.

In the area north west of Australia, both speed and direction of

buoy currents and geostrophic derived currents are in good agreement. The

currents here were about 1/3 knot. In a much lwer current area of 1/5 to

1/4 knot along 230S., direction of buoy travel was generally opposite to

that shown by geostrophic nalculations and XBT sections, and may be in

error. Whether this is because of loss of drogue, or wind effects over-
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riding weak currents is not known, but it is a reminder that surface

currents indicated by buoys are also sometimes in need of verification from

other sources, particularly in low current areas.

(C) Comparisons of Oceanographic Conditions With Other Data.

The general surface circulations and surface temperature for the

entire area discussed here are similar to the general patterns found in the

Indian Ocean Fxpedition data over a more extended time. Since the IOE stu-

dies have shown the importance of the regular monsoon cycle in establishing

a regular cycle also in the oceanic circulation, this is not very

remarkable. What is surprising is that almost identical patterns and

results are seen in some areas off north-west Australia, in data for June

taken 22 years apart, in both SST and surface dynamic topography (and

therefore surface currents). Tchernia (1980) describes this as beinq one

of only two areas in the Indian Ocean (the other is the Bay of Bengal)

bearing the stamp of local climatic conditions. The striking similarities

in data for the area north west of Australia in June coupled with the fact

that dynamics in other periods are found to be different, may indicate that

this area also tends to experience a highly regular seasonal cycle, at

least in some periods. The similarities occur in areas where they would

not normally be expected, i.e. in open ocean areas, not at land mass boun-

daries for example.

Currents off the north west Australian area are generally believed

to be to the north and north-east in February-March and to the west and

south-west in August-September (Tchernia, 1980; plates 13 and 14). The

cyclonic circulation discussed earlier could therefore arise in the

transition period between these two states as a direct result of the

current reversals. It remains to he seen whether a regular cycle does

exist, or if the similarities are coincidental.
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Dom, froa FRV Seela cras was supplied by Wt G. Leeh of 05110

*aviva. Laboratories. It R. Bailey of CSIRO supplied the 3?T dots from

MV AMR* Atralft. W1A satellite Iafery was obtained from Dr D. Myer* of

the lbstera Aetrolien Institute of brehflogy. 7bee Inputs have allowed

a more ef fective analyst*.
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